Cedar Creek Natural History Area: Literature | Up Home |
Citation.Dijkstra, F. A.; Hobbie, S. E.; Reich, P. B. 2005. Soil processes affected by sixteen grassland species grown under different environmental conditions. Soil Science Society of America Journal 70:770-777.
Abstract. Plant species, and their interactions with the environment, determine both the quantity
and chemistry of organic matter inputs to soils. Indeed, countless studies have linked the
quality of organic matter inputs to litter decomposition rates. However, few studies have
examined how variation in the quantity and chemistry of plant inputs, caused by either
interspecific differences or changing environmental conditions, influences the dynamics
of soil organic matter. We studied the effects of 16 grassland species from 4 functional
groups (C3 and C4 grasses, forbs, and legumes) growing under ambient and elevated CO2
(560 ppm) and N inputs (4 g m–2 yr–1) on soil carbon (C) and nitrogen (N) dynamics after
4 yr in a grassland monoculture experiment in Minnesota, USA. Specifically, we related
soil C and N dynamics to variation among species and their responses to the CO2 and N
treatments in plant biomass and chemistry of roots, the dominant detrital input in the
system. The 16 species caused much larger variation in plant litter inputs and chemistry,
as well as soil C and N dynamics, than the CO2 and N treatment. Not surprising, variation
in the quantity of plant inputs to soils contributed to up to a two-fold variation in
microbial biomass and amount of respired nonlabile soil C. Root N concentration (across
species and CO2 and N treatments) was significantly negatively related to decomposition
of nonlabile soil C and positively related to net N mineralization. Greater labile C inputs
decreased rates of net N mineralization, likely because of greater N immobilization. Thus,
of the traits examined, plant productivity, tissue N concentration, and labile C production
such as from rhizodeposition were most important in causing variation in soil C and N
dynamics among species and in response to altered atmospheric CO2 and N supply.
Abbreviations: ANOVA, analysis of variance • BioCON, Biodiversity, CO2, and N •
FACE, free-air CO2 enrichment